Enumeration of Shi regions with a fixed separating wall

Ricardo Mamede joint work with Alessandro Conflitti and Eleni Tzanaki

The 5th Combinatorics Day, Covilhã

17-4-2015

The extended Shi Arrangement

- $\{\varepsilon_1, \dots, \varepsilon_{n+1}\}$ standard basis of \mathbb{R}^{n+1}
- ⟨|⟩ standard inner product
- $\Pi = \{\alpha_1, \dots, \alpha_n\}$, where $\alpha_i = \varepsilon_i \varepsilon_{i+1}$, for $i = 1, \dots, n$, is a basis of

$$V = \{(x_1, x_2, \dots, x_{n+1}) \in \mathbb{R}^{n+1} : x_1 + x_2 + \dots + x_{n+1} = 0\}.$$

- $\alpha_{ij} = \alpha_i + \cdots + \alpha_j = \varepsilon_i \varepsilon_{j+1}$, with $\alpha_{ii} = \alpha_i$, and $\theta = \alpha_{1,n}$
- The elements of $\Delta = \{\varepsilon_i \varepsilon_j : i \neq j\}$ are called roots A root α is positive $(\alpha > 0)$ if $\alpha \in \Delta^+ = \{\varepsilon_i \varepsilon_j : i < j\}$.

The extended Shi Arrangement

• For each $\alpha \in \Delta^+$ we define its reflecting hyperplane

$$H_{\alpha,0} = \{ v \in V : \langle v | \alpha \rangle = 0 \},$$

and for $k \in \mathbb{Z}$, the $H_{\alpha,0}$'s translate

$$H_{\alpha,k} = \{ v \in V : \langle v | \alpha \rangle = k \}.$$

The extended Shi arrangement, here called the m-Shi arrangement, is

$$\mathcal{H}_m = \{ H_{\alpha,k} : \alpha \in \Delta^+, -m < k \le m \}.$$

The 2-Shi arrangement $\mathcal{H}_2 = \{H_{\alpha,k} : \alpha \in \Delta^+, -2 < k \leq 2\}.$

- A region is a connected component of $V \setminus \bigcup_{H \in \mathcal{H}_m} H$
- For $\alpha \in \Delta^+$ and $k \in \mathbb{Z}$,

$$H_{\alpha,k}^+ = \{ v \in V : \langle v | \alpha \rangle \ge k \}.$$

• The dominant chamber of V is $V \cap \bigcap_{i=1}^n H_{\alpha_{i,0}}^+$.

 \mathcal{H}_2 ; the dominant chamber is the part with a gray background.

- A dominant region is a region contained in the dominant chamber.
- A wall of a region R is an hyperplane which contains a facet of R.
- A separating wall for a region R is a wall of R which separates R from the region $A_0 := H_{\theta,1}^- \cap \bigcap_{i=1}^n H_{\alpha_{i,0}}^+$.

Each connected component of

$$V\setminus\bigcup_{\substack{\alpha\in\Delta^+\\k\in\mathbb{Z}}}H_{\alpha,k}$$

ia called an alcove.

The affine symmetric group $\widehat{\mathfrak{S}}_n$ acts freely and transitively on the set of alcoves. We identify each alcove A with the unique $w \in \widehat{\mathfrak{S}}_n$ such that $A = w^{-1}A_0$.

Each simple generator s_i of $\widehat{\mathfrak{S}}_n$ acts by reflection over the hyperplane $H_{\alpha_i,0}$, and s_0 acts as reflection over the hyperplane $H_{\theta,1}$.

Enumerative results - Motivation

- The number of dominant regions in the m-Shi arrangement is $\frac{1}{mn+1}\binom{(m+1)n}{n}$.
- The number of dominant regions having k separating walls of type $H_{\alpha_{ii},m}$ is equal to the kth m-Narayana number

$$\frac{1}{mn+1}\binom{n-1}{n-k-1}\binom{mn+1}{n-k}.$$

Problem: Fix $\alpha_{ij} \in \Delta^+$ and an integer $0 < k \le m$. Find the number of dominant regions having separating wall $H_{\alpha_{ii},k}$.

Problem: Fix $\alpha_{ij} \in \Delta^+$ and an integer $0 < k \le m$. Find the number of dominant regions having separating wall $H_{\alpha_{ii},k}$.

Every alcove A can be written as $w^{-1}A_0$ for a unique $w \in \widehat{\mathfrak{S}}_n$, and additionally, for each $\alpha \in \Delta^+$, there is a unique integer k_α such that

$$k_{\alpha} < \langle \alpha, x \rangle < k_{\alpha} + 1,$$

for all $x \in A$.

Every alcove A can be written as $w^{-1}A_0$ for a unique $w \in \widehat{\mathfrak{S}}_n$, and additionally, for each $\alpha \in \Delta^+$, there is a unique integer k_α such that

$$k_{\alpha} < \langle \alpha, x \rangle < k_{\alpha} + 1,$$

for all $x \in A$.

Lemma (Shi,1987)

Let $\{k_{\alpha_{ij}}\}_{1\leq i\leq j\leq n-1}$ be a set of $\binom{n}{2}$ integers. There exists $w\in\widehat{\mathfrak{S}}_n$ such that

$$k_{\alpha_{ij}} < \langle \alpha_{ij}, x \rangle < k_{\alpha_{ij}} + 1,$$

for all $x \in w^{-1}A_0$ if and only if

$$\mathit{k}_{\alpha_{\mathit{it}}} + \mathit{k}_{\alpha_{\mathit{t+1},\mathit{j}}} \leq \mathit{k}_{\alpha_{\mathit{ij}}} \leq \mathit{k}_{\alpha_{\mathit{it}}} + \mathit{k}_{\alpha_{\mathit{t+1},\mathit{j}}} + 1,$$

for all t such that $i \le t < j$.

The root poset and m-Shi tableaux

• Root order on Δ^+ : $\alpha \leq \beta$ if $\beta - \alpha$ is in the integer span of Π .

The root poset and m-Shi tableaux

• Root order on Δ^+ : $\alpha \leq \beta$ if $\beta - \alpha$ is in the integer span of Π .

α_{14}	α_{13}	α_{12}	α_{11}
α_{24}	α_{23}	α_{22}	
α_{34}	α_{33}		
α_{44}		•	

• Arrange the roots α_{ij} , $1 \le i < j \le n$ in a n-staircase diagram such that α_{ij} is in box (i, n - i + 1).

The root poset and m-Shi tableaux

• To each root α_{ij} we associate an integer $0 \leq k_{ij} \leq m$

k ₁₄	k ₁₃	k ₁₂	k ₁₁
k ₂₄	k ₂₃	k ₂₂	
k ₃₄	k ₃₃		
k ₄₄			

 The filling of this n-staircase diagram is called an m-Shi tableau if the following two conditions hold:

$$k_{ij} = egin{cases} k_{i\ell} + k_{\ell+1,j} ext{ or } k_{i\ell} + k_{\ell+1,j} + 1, & ext{ if } k_{i\ell} + k_{\ell+1,j} \leq m-1 \ & ext{ and } i \leq \ell < j \ m, & ext{ otherwise.} \end{cases}$$

Example of a 4-Shi tableau

3	2	1	1
2	1	0	
2	1		
1			

- For each $k_{ij} \leq m-1$ we check if the sum of the values of the endpoints of each hook on k_{ij} of length j-i+2 sum up to k_{ij} or $k_{ij}-1$.
- For each $k_{ij}=m$ we check if the sum of the values of the endpoints of each hook on k_{ij} of length j-i+2 sum up to a value $\geq m$.

Example of a 4-Shi tableau

Checking if the entries of the first row are valid:

•	• • • • • • • • • • • • • • • • • • • •	o ··	• • • • • • • • • • • • • • • • • • • •
3	2	1	1
2	1	0	
2	1		
1			

3	2	1	1
2	1	0	
2	1		
1			

3	2	1	1
2	1	0	
2	1		
1		•	

Theorem (Athanasiadis)

The m-Shi tableaux are in bijection with the dominant regions in the m-Shi arrangement.

The bijection:

- Given a dominant region R in the m-Shi arrangement, k_{ij} is the number of integer translates of $H_{\alpha_{ij},0}$ that separates R from the origin.
- Given an m-Shi tableau, the corresponding region R consists of those points x such that $\langle \alpha_{ij}, x \rangle \geq k_{ij}$, for all $1 \leq i \leq j \leq n$.

m-Shi tableaux and separating walls

Theorem

Let T_R be the m-Shi tableau for the region R. The hyperplane $H_{\alpha_{ij},m}$ is a separating wall for the region R if and only if $k_{ij}=m$ and $k_{i\ell}+k_{\ell+1,i}=m-1$ for all $i\leq \ell < j$.

Problem:

- Count the number of regions having $H_{\alpha_{ii},m}$ as separating wall.
- Count the number of m-Shi tableux with $k_{ij} = m$ and $k_{i\ell} + k_{\ell+1,i} = m-1$ for all $i \leq \ell < j$.

Base Case

Theorem (Fishel, Tzanaki, Vazirani)

The number of regions in the m-Shi arrangement \mathcal{H}_m with separating wall $H_{\theta,m}$ is equal to m^{n-1} .

- Let $w = w_1 \cdots w_{n-1}$ be a word over the alphabet $\{0, 1, \dots, m-1\}$, and let $\widetilde{w} = \widetilde{w}_1 \cdots \widetilde{w}_{n-1}$ be its rearrangement in increasing order.
- Define the position vector $\mathsf{Pos}(\widetilde{w}) = (\mathsf{Pos}(\widetilde{w}_1), \dots, \mathsf{Pos}(\widetilde{w}_{n-1}))$ as follows: if j = 1 or $\widetilde{w}_i > \widetilde{w}_{i-1}$

$$\mathsf{Pos}(\widetilde{w}_j) = \mathsf{min}\{1 \leq l \leq n-1 \text{ such that } w_l = \widetilde{w}_j\},$$

whereas if j>1 and $\widetilde{\mathit{w}}_{j}=\widetilde{\mathit{w}}_{j-1}$

$$\mathsf{Pos}(\widetilde{w}_j) = \mathsf{min}\{\mathsf{Pos}(\widetilde{w}_{j-1}) + 1 \le l \le n-1 \text{ such that } w_l = \widetilde{w}_j\}.$$

- Let $w = w_1 \cdots w_{n-1}$ be a word over the alphabet $\{0, 1, \dots, m-1\}$, and let $\widetilde{w} = \widetilde{w}_1 \cdots \widetilde{w}_{n-1}$ be its rearrangement in increasing order.
- Define the position vector $\mathsf{Pos}(\widetilde{w}) = (\mathsf{Pos}(\widetilde{w}_1), \dots, \mathsf{Pos}(\widetilde{w}_{n-1}))$ as follows: if j = 1 or $\widetilde{w}_i > \widetilde{w}_{i-1}$

$$\mathsf{Pos}(\widetilde{w}_j) = \mathsf{min}\{1 \le l \le n-1 \text{ such that } w_l = \widetilde{w}_j\},$$

whereas if j>1 and $\widetilde{w}_j=\widetilde{w}_{j-1}$

$$\mathsf{Pos}(\widetilde{w}_j) = \mathsf{min}\{\mathsf{Pos}(\widetilde{w}_{j-1}) + 1 \le l \le n-1 \text{ such that } w_l = \widetilde{w}_j\}.$$

For example, if w = 61513 then $\widetilde{w} = 11356$ and $Pos(\widetilde{w}) = (2, 4, 5, 3, 1)$.

• We set $k_{1,n}=m$, and for all $j=1,\ldots,n-1$ we set

$$k_{1,j} = \widetilde{w}_j$$

and

$$k_{i+1,n-1} = m-1-k_{1,i} = m-1-\widetilde{w}_i$$
.

• We set $k_{1,n}=m$, and for all $j=1,\ldots,n-1$ we set

$$k_{1,i} = \widetilde{w}_i$$

and

$$k_{i+1,n-1} = m-1-k_{1,i} = m-1-\widetilde{w}_i$$
.

• For all t = 2, ..., n-1 and all j = t, ..., n-1 we set

$$k_{t,j} = \begin{cases} k_{1,j} - k_{1,t-1} & \text{if } \mathsf{Pos}(\widetilde{w}_{t-1}) < \mathsf{Pos}(\widetilde{w}_{j}) \\ k_{1,j} - k_{1,t-1} - 1 & \text{if } \mathsf{Pos}(\widetilde{w}_{t-1}) > \mathsf{Pos}(\widetilde{w}_{j}); \end{cases}$$

7				7	6	5	3	1	1
				5					
				5					
				3					
				1					
	•		\rightarrow	0					

Γ	7					7	6	5	3	1	1		7	6	5	3	1	1
					-	5						•	5	4	4	2	0	
				-		5							5					
						3							3					
						1							1					
					\rightarrow	0						\rightarrow	0					

	_			7							1						
7					7	6	5	3	1	1		7	6	5	3	1	1
					5							5	4	4	2	0	
					5							5					
					3							3					
					1							1					
		_		\rightarrow	0						\rightarrow	0					

7	6	5	3	1	1
5	4	4	2	0	
5	4	3	2		
3	2	1			
1	0				
0					

Consider the tableaux $\boxed{0}$

inversion table is $I = \boxed{1}$

; then
$$\widetilde{\it w}=11356$$
 and the

Consider the tableaux

inversion table is $I = \boxed{1}$

• Row 1: Pos(6) < Pos(1) and Pos(5), Pos(3), Pos(1) > Pos(1). Thus

$$w = 61\{1,3,5\}$$

Consider the tableaux

inversion table is $I = \boxed{1}$

• Row 1: Pos(6) < Pos(1) and Pos(5), Pos(3), Pos(1) > Pos(1). Thus

$$w = 61\{1,3,5\}$$

• Row 2: Pos(6), Pos(5) < Pos(1) and Pos(3) > Pos(1). Thus

$$w = 61513.$$

Towards the general case

- Let $h_{\alpha,k}^n$ be the set of dominant regions in the m-Shi arrangement having $H_{\alpha,k}$ as a separating wall.
- Given a fundamental region R, let

$$r(R)=\#\{(j,k):R \text{ and } A_0 \text{ are separated by } H_{\alpha_{1j}k}, 1\leq k\leq m\}$$
 $c(R)=\#\{(i,k):R \text{ and } A_0 \text{ are separated by } H_{\alpha_{i,n-1}k}, 1\leq k\leq m\}$

• The generating function is

$$f_{lpha_{ij}m}^n(p,q) = \sum_{R \in h_{lpha_{ii}k}^n} p^{c(R)} q^{r(R)}.$$

$$f_{\alpha_1,2}^3(p,q) = p^4q^2 + p^4q^3 + p^4q^4.$$

- C. A. Athanasiadis. On a refinement of the generalized Catalan numbers for Weyl groups. Trans. Amer. Math. Soc., 357(1):179–196 (electronic), 2005
- S. Fishel, E. Tzanaki and M. Vazirani, Counting Shi regions with a fixed separating wall, DMTCS proc. AO, 2011, 351–362.
- J. Y. Shi. The Kazhdan-Lusztig cells in certain affine Weyl groups, volume 1179 of Lecture Notes in Mathematics.
 Springer-Verlag, Berlin, 1986.
- R. P. Stanley. Hyperplane arrangements, parking functions and tree inversions. In Mathematical essays in honor of Gian-Carlo Rota (Cambridge, MA, 1996), volume 161 of Progr. Math., pages 359–375. Birkhauser Boston, Boston, MA. 1998
- A. Conflitti, R. Mamede, E. Tzanaki, Dominant Shi regions with a fixed separating wall: bijective enumeration, The Australasian Journal of Combinatorics, Volume 60 (2014), pp 198-207.